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Abstract. Satellite retrievals of tropospheric column formaldehyde (HCHO) and nitrogen dioxide (NO2) are 

frequently used to investigate the sensitivity of ozone (O3) production to concentrations and emissions of nitrogen 20 

oxides (NOx) and volatile organic carbon compounds (VOCs). Space-based remote-sensing information of chemical 

proxies for NOx (i.e., NO2) and VOCs (i.e., HCHO), in particular the ratios of tropospheric column HCHO and NO2 

(FNRs), provide insight into the non-linear relationship of O3 formation in the lower troposphere. Ultraviolet–visible 

(UV/VIS) satellite spectrometers such as the Ozone Monitoring Instrument (OMI) and TROPOspheric Monitoring 

Instrument (TROPOMI) are capable of providing FNR information with high spatiotemporal coverage, yet a recent 25 

study suggested that the biases and noise of satellite retrievals are the largest source of uncertainty for applying 

satellite-derived FNRs to better understand O3 production sensitivities. To quantify, and inter-compare, the 

uncertainties in two of the most commonly-applied satellite sensors to investigate O3 production sensitivities, we 

evaluated OMI and TROPOMI retrievals of NO2 and HCHO tropospheric columns, and resulting FNRs, using 

Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and GEO-CAPE Airborne Simulator (GCAS) 30 

airborne remote-sensing data taken during the Long Island Sound Tropospheric Ozone Study 2018 (LISTOS 2018).  

Compared to suborbital remote-sensing observations of tropospheric column NO2 and HCHO, the accuracy 

of OMI (using both the National Aeronautics and Space Administration (NASA) version 4 and the Quality Assurance 

for Essential Climate Variables (QA4ECV) retrieval algorithms) and TROPOMI were magnitude-dependent with high 

biases (i.e., satellite tropospheric columns > suborbital tropospheric columns) in clean/background environments and 35 

a tendency towards a low bias (i.e., satellite tropospheric columns < suborbital tropospheric columns) in moderate to 

polluted regions. Campaign-averaged NO2 median biases for OMI, using both the NASA and QA4ECV algorithms, 

were similar at 0.4±4.1 × 1015 molecules cm-2 (6.3%) and 0.4±4.5 × 1015 molecules cm-2 (6.8%), respectively. 

TROPOMI retrievals of NO2 had a campaign-averaged median bias of -0.3±3.7 × 1015 molecules cm-2 (-4.8%) and 

0.3±3.3 × 1015 molecules cm-2 (5.8%) when averaged at finer (0.05° × 0.05°) and coarser (0.15° × 0.15°) spatial 40 

resolution. The three satellite products (NASA OMI, QA4ECV OMI, and TROPOMI) differed more when evaluating 

tropospheric column HCHO retrievals. Noise in the HCHO retrievals, likely due to low signal-to-noise ratios and the 

fact the UV/VIS measurement sensitivity at shorter wavelengths used in HCHO retrievals are low in the troposphere, 

resulted in low correlations and high oscillation/variability in bias (bias standard deviation) in all three satellite 

products, with campaign-averaged median biases of 5.1±7.8 × 1015 molecules cm-2 (38.7%), 2.3±8.9 × 1015 molecules 45 

cm-2 (17.3%), 1.9±6.7 × 1015 molecules cm-2 (12.9%), and 2.9±4.9 × 1015 molecules cm-2 (23.1%) for NASA OMI, 

QA4ECV OMI, and TROPOMI at finer and coarser spatial resolution, respectively. Spatially-averaging TROPOMI 

tropospheric column HCHO, along with NO2 and FNRs, to coarser resolutions similar to OMI native pixel size proved 

to reduce the bias standard deviation of the retrieval data. While large median biases, and enhanced variability in bias, 

were derived for HCHO, errors in both NO2 and HCHO tropospheric columns tended to offset as all three satellite 50 

products compared well to observed FNRs with campaign-averaged median biases from NASA OMI, QA4ECV OMI, 

and TROPOMI of 0.4±3.8 (11.0%), -0.2±3.3 (-5.4%), and 0.4±2.3 (13.0%), respectively. While satellite-derived FNRs 

had minimal campaign-averaged median biases, the statistical analysis shows that all satellite FNR values still had 

large bias standard deviation due to unresolved errors in satellite retrievals of HCHO. This result is important as 

accurate retrievals (minimal median biases) of FNRs from satellites do not suggest the accuracy of the underlying 55 
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proxy species. The reduction in noise in satellite retrievals of HCHO with additional calibration and improved sensor 

design and/or improved a priori information of the vertical profiles of HCHO in the troposphere to avoid the impact 

of the low measurement sensitivity in the shorter UV/VIS wavelengths used to retrieve HCHO is critical for reducing 

unresolved biases in satellite retrievals of FNRs. Furthermore, this work demonstrates the large impact of a) a priori 

vertical profiles of NO2 and HCHO for calculations of Air Mass Factors in tropospheric column trace gas retrievals in 60 

both OMI and TROPOMI, b) spatiotemporal averaging to increase signal-to-noise, and c) different retrieval algorithms 

on retrieval errors. Finally, the novel diurnal information of tropospheric FNRs that is expected to be provided by the 

upcoming NASA geostationary sensor Tropospheric Emissions: Monitoring of Pollution (TEMPO) is investigated 

and compared to low earth orbiting sensors currently applied to investigate tropospheric FNRs.  

  65 
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1 Introduction 

Tropospheric ozone (O3) is a harmful pollutant and near-surface concentrations of this species have detrimental 

impacts on human- and environmental-health (Kampa and Castanas, 2008; Van Dingenen et al., 2009). The production 

and destruction rates of tropospheric O3 are controlled by complex chemical reactions involving the primary precursor 

species of nitrogen oxides (NOx = nitric oxide and nitrogen dioxide (NO + NO2)) and volatile organic compounds 70 

(VOCs) (Sillman, 1999; Lelieveld and Dentener, 2000). It is critical to understand precursor species emissions and 

subsequent atmospheric chemistry controlling surface-level O3 production rates since the United States (US) 

Environmental Protection Agency (EPA) designs and enforces concentration limits of criteria pollutants (e.g., O3, 

NO2, carbon monoxide, particulate matter, and sulfur dioxide) under the National Ambient Air Quality Standards 

(NAAQS). The current NAAQS for O3 requires that 3-year averaged annual fourth-highest daily maximum 8-hour 75 

mean concentrations be ≤ 70 ppb (US EPA, 2015). To reduce and maintain surface-level O3 concentrations below 

NAAQS thresholds, many regions have designed and implemented emission control strategies of precursor species. 

To design effective emission reduction strategies, knowledge about the non-linear sensitivity of O3 formation to NOx 

and VOCs is critical (Crutzen, 1973; Sillman, 1999). Based on the relative concentrations of NOx and VOCs, the 

formation of O3 is sensitive to perturbations of either NOx (NOx-limited regimes) or VOC emissions (NOx-saturated 80 

or VOC/radical-limited regimes). These O3 sensitivity regimes are separated by a transitional regime where O3 

formation is sensitive to changes in both NOx and VOC emissions. 

 To understand the non-linear relationship of O3 formation to NOx and VOC emissions in complex chemical 

environments (e.g., polluted regions and areas of heterogenous concentrations/emissions of NOx and VOCs), 

spatiotemporally dense in situ measurements or airborne remote-sensing observations of precursor species 85 

concentrations and chemical reactivity are desired (e.g., Souri et al., 2020). Since these measurements are often 

spatiotemporally sparse, to supplement the time and space void of these observations, thoroughly evaluated model 

simulations can be applied. However, the accuracy of chemical transport models (CTMs) is highly dependent on inputs 

such as emission inventories, simulated meteorology, chemistry mechanisms, and removal processes all of which have 

varying levels of uncertainty. These model uncertainties can directly impact the understanding of the non-linear 90 

relationship of O3 formation when using these simulated data (e.g., Choi and Souri, 2015). In the absence of accurate 

in situ measurements or high spatiotemporal suborbital remote-sensing information of chemical proxies for NOx (i.e., 

NO2) and VOCs (i.e., formaldehyde (HCHO)), satellite retrievals of these species have also been demonstrated to 

provide insight into the O3-NOx-VOC relationship (Tonnesen and Dennis, 2000; Martin et al., 2004; Duncan et al., 

2010; Souri et al., 2017; Jin et al., 2017, 2020). The ratio of HCHO to NO2 concentrations (hereinafter FNR) has been 95 

demonstrated to provide information to monitor the local sensitivity of O3 production from the chemical loss of 

HO2+RO2 (LROx) and chemical loss of NOx (LNOx) controlling O3-NOx-VOC chemistry (Tonnesen and Dennis, 

2000; Kleinman et al., 2001). 

 Multiple past and current space-based spectrometers have the capability to retrieve simultaneous NO2 and 

HCHO tropospheric columns including Global Ozone Monitoring Experiment (GOME, Martin et al., 2004), GOME-100 

2 (Choi et al., 2012), Ozone Monitoring Instrument (OMI, Duncan et al., 2010), and TROPOspheric Monitoring 

Instrument (TROPOMI, Chan et al., 2020, Souri et al., 2021). In addition to these low earth orbiting satellites, 
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Tropospheric Emissions: Monitoring of Pollution (TEMPO) is an upcoming National Aeronautics and Space 

Administration (NASA) geostationary satellite mission which will retrieve hourly NO2 and HCHO tropospheric 

columns over North America (Zoogman et al., 2017; Chance et al., 2019). This geostationary sensor over North 105 

America is part of a constellation of air quality spaceborne sensors including the Geostationary Environment 

Monitoring Spectrometer (GEMS) instrument onboard the Korean Aerospace Research Institute GEO-KOMPSAT-

2B satellite (Kim et al., 2020) and the European Space Agency (ESA) Sentinel-4 mission (ESA, 2017). Satellite 

retrievals of NO2 and HCHO have been applied to determine the sensitivity of O3 formation to NOx and VOC 

emissions at coarse spatial and temporal scales (e.g., Martin et al., 2004; Duncan et al., 2010) to finer spatiotemporal 110 

scales and focusing on long-term trends (e.g., Choi et al., 2012; Jin and Holloway, 2015; Choi and Souri, 2015; 

Schroeder et al., 2017; Souri et al., 2017; Jin et al., 2017, 2020). However, uncertainties remain in how accurately 

satellites can retrieve information needed to study surface-level or planetary boundary layer (PBL) O3-NOx-VOC 

relationships. These uncertainties stem from a) the exact thresholds of FNRs that separate NOx-limited, transition, and 

VOC-limited regimes, b) the ability of tropospheric column retrievals to represent PBL chemical composition for air 115 

quality purposes due to variability in the vertical structure of NO2 and HCHO concentrations and satellite sensitivity 

throughout the entire troposphere, c) whether HCHO is an effective proxy for total VOC reactivity, d) satellite spatial 

representation errors, and e) the accuracy/uncertainty of satellite retrievals of tropospheric column HCHO and NO2. 

Of all these sources of uncertainty, mean/median and random biases due to noise in satellite retrievals of tropospheric 

column HCHO and NO2 may be the largest source of error for retrieving FNRs using satellite sensors (Souri et al., 120 

2022a). Therefore, it is vital to accurately define the level of errors/biases associated with satellite sensors to 

understand the capability of using this spatiotemporally-dense data source for investigating the impact of NOx and 

VOC emission perturbations on O3 chemistry. 

 This study is designed to demonstrate the effectiveness of two frequently applied satellites for evaluating O3-

NOx-VOC relationships (i.e., OMI and TROPOMI) to accurately retrieve tropospheric HCHO and NO2 column 125 

concentrations and the subsequent tropospheric column FNRs. OMI and TROPOMI retrievals have been evaluated in 

numerous studies (e.g., Judd et al., 2020; Vigouroux et al., 2020; Zhu et al., 2020; Lamsal et al., 2021), typically 

focusing on a specific sensor and species (e.g., evaluating OMI or TROPOMI and NO2 or HCHO separately); however, 

not for the accuracy to retrieve tropospheric column FNRs. Here we validate OMI and TROPOMI retrievals of HCHO 

and NO2, and subsequent FNRs, with airborne spectrometer data obtained during the Long Island Sound Tropospheric 130 

Ozone Study 2018 (LISTOS 2018) field campaign conducted during the summer of 2018 in the northeast region of 

the US. Furthermore, this work demonstrates the additional information of tropospheric FNRs that is expected to be 

provided by the upcoming NASA geostationary sensor TEMPO. The manuscript is designed as follows. Section 2 

presents the satellite, airborne remote-sensing, model data. and evaluation techniques applied in this study. The results 

are reported in Sect. 3 and the final conclusions are presented in Sect. 4. 135 

2 Methods 

This study focuses on the spatial domain and time period (June 25 to September 6, 2018) of the LISTOS 2018 

(https://www.nescaum.org/documents/listos; https://www-air.larc.nasa.gov/missions/listos/index.html) field 
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campaign. This campaign was chosen due to the overlap of the TROPOMI and OMI missions, the availability of 

airborne spectrometer retrievals (i.e., Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) and 140 

GEO-CAPE Airborne Simulator (GCAS)) of tropospheric column HCHO and NO2 which are effective satellite 

validation data (e.g., Judd et al., 2020), and the large spatiotemporal coverage of the airborne spectrometer data. Many 

studies have applied stationary sources of ground-based remote-sensing data to validate OMI and TROPOMI (e.g., 

MAX-DOAS, FTIR, Pandora); however, using the airborne GeoTASO and GCAS products allows for the evaluation 

of the satellite retrievals in variable environments (i.e., clean/background to heterogenous/polluted regions) in the 145 

same day. The rest of this section describes the remote-sensing and model data applied in this study for evaluation of 

tropospheric column HCHO and NO2 from OMI and TROPOMI. 

2.1 OMI remote-sensing products 

The Dutch-Finnish nadir viewing spectrometer OMI, onboard the polar-orbiting NASA Aura satellite, which was 

launched in 2004, is an ultraviolet–visible (UV/Vis) spectrometer (Levelt et al., 2006). Retrievals are made from three 150 

wavelength channels between 260 to 510 nm (UV-1: 264 to 311 nm, UV-2: 307 to 383 nm, Vis: 349 to 504 nm). Aura-

OMI has a local equatorial overpass time of ~13:45 with nearly-complete daily global surface coverage due to the 

large ~2,600 km swath width. Level-2 (L2) tropospheric vertical column density (VCD) OMI NO2 retrievals from the 

NASA version 4 standard product (OMNO2; Lamsal et al., 2021) and the NASA operational OMI HCHO version 3 

product using the Smithsonian Astrophysical Observatory (SAO) retrieval algorithm (OMHCHO; González Abad et 155 

al., 2015, 2016) were applied in this study. To investigate the impact of different retrieval algorithms, we also apply 

tropospheric column OMI NO2 and HCHO data derived in the Quality Assurance for Essential Climate Variables 

(QA4ECV) project (see Sect. 2.1.2). 

 Starting in 2007, OMI experienced a field-of-view blockage known as the “row anomaly” which affects the 

data quality at all retrieval wavelengths for some rows (Dobber et al., 2008; Schenkeveld et al., 2017). The row 160 

anomaly in NO2 retrieval is avoided in this study by filtering out rows/pixels flagged by the row anomaly detection 

algorithm. The postprocessing bias correction approach using the reference sector method for OMI HCHO is applied 

here and corrects for the row anomaly in HCHO data (De Smedt et al., 2015). OMI data also has systematic biased 

retrievals in a striped pattern running in 60 cross-track field-of-views. A “de-striping” correction is already applied to 

the NO2 data (Boersma et al., 2011) and the reference sector method corrects for these artifacts in the HCHO data (De 165 

Smedt et al., 2015; González Abad et al., 2015; Zara et al., 2018). 

2.1.1 OMI – NASA OMNO2 and OMHCHO  

The primary OMI data applied in this study are the L2 tropospheric VCD OMNO2 and OMHCHO retrievals provided 

at ~13 km × 24 km near nadir to ~24 km × 160 km towards the edge of the swath. Lamsal et al. (2021) describes the 

OMNO2 retrieval algorithm in detail and is explained here only briefly (referred to as NASA OMI NO2 throughout). 170 

The NASA OMI NO2 retrieval uses a differential optical absorption spectroscopy (DOAS) approach, with a fitting 

window between 405 and 465 nm, to derive slant column densities (SCD) of NO2. Tropospheric NO2 columns are 

separated from the entire atmospheric column using an observation-based stratosphere–troposphere separation scheme 
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described in Bucsela et al. (2013). Tropospheric SCDs are then converted to tropospheric VCDs using an Air Mass 

Factor (AMF) calculated with a radiative transfer model and simulated atmospheres from a CTM. The AMF is an 175 

integrated product of scattering weights (SWs) and trace gas profile shapes (Palmer et al., 2001). Tropospheric AMFs 

are calculated in NASA OMI NO2 retrievals using monthly-averaged a priori profiles from the NASA Global 

Modelling Initiative (GMI) model at 1° × 1.25° spatial resolution, clouds from the OMI O2–O2 algorithm (Vasilkov 

et al., 2018), and surface albedo from geometry-dependent surface Lambertian equivalent reflectivity (GLER) data 

(Vasilkov et al., 2017; Qin et al., 2019; Fasnacht et al., 2019). The uncertainty of the tropospheric NASA OMI NO2 180 

product has been shown to vary with cloudiness and pollution concentrations and is in the range of ~20% to ~60% 

(Bucsela et al., 2013), with contributions from errors in spectral fitting, stratospheric correction, and AMF calculations.  

 González Abad et al. (2015, 2016) describes the OMHCHO retrieval algorithm in detail (referred to as NASA 

OMI HCHO throughout). Briefly, retrievals of HCHO SCDs are obtained by spectrally fitting OMI radiances using 

the basic optical absorption spectroscopy (BOAS) method (Chance, 1998) with a fitting window between 328.5 and 185 

346.0 nm. Then, like NASA OMI NO2 retrievals, SCDs are converted to VCDs applying derived AMFs using GEOS-

Chem a priori profiles, cloud information (Martin et al., 2002; Acarreta et al., 2004), and surface albedo data (Vasilkov 

et al., 2014). Finally, postprocessing across-track bias corrections are applied by comparing daily HCHO VCDs with 

background VCDs simulated with the GEOS-Chem CTM over a clean region (known as the reference sector). The 

uncertainty of the HCHO product has been shown to vary with pollution concentration ranging from ~45% to ~105% 190 

with largest contributions from the spectral fitting and AMF calculations (González Abad et al., 2015, 2016).  

2.1.2 OMI – QA4ECV NO2 and HCHO 

For comparison to the NASA OMI retrieval products, we inter-compared and evaluated OMI NO2 and HCHO 

retrievals from the QA4ECV project (www.qa4ecv.eu). Retrievals from the QA4ECV NO2 version 1.1 and QA4ECV 

HCHO version 1.2 data products are applied in this study and are provided daily at the same spatial resolution as the 195 

NASA OMI products (~13 km × 24 km near nadir to ~24 km × 160 km towards the edge of the swath). Zara et al. 

(2018) describes the QA4ECV OMI NO2 and HCHO slant column retrievals and Boersma et al. (2018) and De Smedt 

et al. (2018) describe the entire QA4ECV OMI NO2 and HCHO retrieval algorithms, respectively, in detail. They are 

summarized here briefly.  

 QA4ECV retrievals of NO2 SCDs are obtained by linear fits of optical depths to the observed optical depth 200 

using the DOAS technique with a fitting window between 405 and 465 nm (Boersma et al., 2018). While the QA4ECV 

NO2 retrieval is based on DOAS methods, it differs from the NASA OMI NO2 retrieval in many of the retrieval steps 

(Compernolle et al., 2020). For instance, the OMNO2 retrieval algorithm uses non-linear fits of modelled reflectance 

to the observed reflectance. Furthermore, NASA OMI NO2 uses an iterative fitting procedure compared to a 

simultaneous fitting applied in QA4ECV. To calculate tropospheric AMFs, the QA4ECV NO2 retrieval algorithm uses 205 

the same surface albedo (Kleipool et al., 2008) and cloud products (Veefkind et al., 2016) as the previous NASA OMI 

NO2 version 3 data (see Lamsal et al., 2021); however, uses daily a priori profiles from the TM5 CTM at 1° × 1° 

spatial resolution. Tropospheric VCDs of NO2 are separated from the entire column using output from the global TM5 

assimilation model in the QA4ECV NO2 retrieval. For detailed information on the differences in spectral fitting 
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between the NASA OMI NO2 and QA4ECV NO2 retrieval algorithms we refer you to Zara et al. (2018). For details 210 

about differences between AMF calculations in the NASA and QA4ECV OMI algorithms see Lorente et al. (2017). 

QA4ECV NO2 data have been shown to perform relatively well in clean to moderately polluted regions and have a 

low bias in highly polluted regions (Compernolle et al., 2020). Retrievals of QA4ECV HCHO SCDs are conducted in 

a similar manner to QA4ECV NO2 using the DOAS technique and optical depths with a fitting window between 328.5 

and 346.0 nm (Zara et al., 2018; De Smedt et al., 2018). QA4ECV HCHO retrievals show minimal bias in clean to 215 

moderately polluted regions and low biases in polluted locations (e.g., De Smedt et al., 2021). 

2.2 TROPOMI remote-sensing products 

The TROPOMI hyperspectral spectrometer (including eight bands in the UV, VIS, near-infrared, and shortwave 

infrared wavelengths) is onboard the Sentinel-5 Precursor (S5P) satellite developed by the ESA which was launched 

in October 2017. TROPOMI is in orbit with a similar local equatorial overpass time (local time ~13:30) as OMI. 220 

TROPOMI has a swath width of ~2,600 km and a ground pixel size of 3.5 km × 7.0 km at nadir during the time of 

this study (since August 6, 2019 TROPOMI data is available at 3.5 km × 5.5 km) which is >12 times finer than OMI. 

TROPOMI retrievals have been used in numerous recent studies investigating processes controlling NO2 

concentrations and trends (e.g., Goldberg et al., 2021) and FNRs (Wu et al., 2022), taking advantage of the high 

spatiotemporal resolution of the sensor, along with being validated thoroughly (e.g., Judd et al., 2020; De Smedt et 225 

al., 2021). The high spatial resolution information provided by TROPOMI, compared to past UV/VIS spaceborne 

sensors, reduces the representation error of each retrieved NO2 and HCHO pixel (Souri et al., 2022b). In this study, 

we apply daily TROPOMI tropospheric column NO2 v2.3.1 (van Geffen et al., 2022) and HCHO v1.1.5 retrievals (De 

Smedt et al., 2018). For TROPOMI NO2 data we used the product provided by the Product Algorithm Laboratory 

(PAL) which applies the NO2 v2.3.1 algorithm but for the time period between April 2018 - September 2021. The 230 

retrievals of both species use QA4ECV methods described above applying the DOAS methods with spectral fitting 

windows between 405 and 465 nm for NO2 (Boersma et al., 2018) and 328.5 and 346.0 nm for HCHO (De Smedt et 

al., 2018). TROPOMI retrievals are similar to those from the QA4ECV OMI product as it applies the same a priori 

profiles from the TM5 model, albedo data, and cloud fraction information. TROPOMI NO2 v2.3.1 retrievals do differ 

from QA4ECV OMI NO2 products as it uses cloud pressure input from the O2-A band following the FRESCO-wide 235 

approach (van Geffen et al., 2022) instead of O2–O2 absorption. Similarly, TROPOMI HCHO v1.1.5 retrievals differ 

from the QA4ECV OMI HCHO data through applying the S5P ROCINN algorithm which uses the O2-A for cloud 

pressures (Loyola et al., 2018) instead of O2–O2 absorption. 

2.3 TEMPO synthetic retrieval product 

One component of the pre-launch activities of the geostationary TEMPO satellite mission is to generate synthetic 240 

retrieval data for end-user communities, which closely represents the planned operational products of the mission 

planned for launch in early 2023 (Naeger et al., 2021). The synthetic data products are provided daily and at the 

expected 2.0 km × 4.75 km (at nadir) spatial resolution of TEMPO. Synthetic TEMPO data is applied in this study to 

demonstrate the additional FNR information, which will be provided by the high spatiotemporal resolution (including 
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up to hourly information during the daylight hours) of this geostationary sensor, compared to existing low earth orbit 245 

sensors (i.e., OMI and TROPOMI).  

Hourly model output of NO2 and HCHO vertical profiles from the NASA Global Modeling and Assimilation 

Office (GMAO) GEOS Composition Forecasting (GEOS-CF) model were used as input into the TEMPO proxy 

development methodology and sampled at the TEMPO footprint (2.0 km × 4.75 km at the center of the Field of 

Regard) to represent the “true” state of the atmosphere. GEOS-CF simulates meteorology and aerosol and trace gas 250 

concentrations in both the troposphere and stratosphere at a high global spatiotemporal resolution (0.25° × 0.25°) and 

72 vertical layers (Knowland et al., 2020, 2022; Keller et al., 2020). The GEOS-CF model is a reliable source for the 

“true” atmosphere as it has been shown to produce realistic concentrations of aerosols and trace gases in comparison 

to remote-sensing observations and in situ measurements (e.g., Keller et al., 2020; Johnson et al., 2021; Knowland et 

al., 2022). Scattering weights in clear and cloudy conditions are derived from pre-computed lookup tables of radiances 255 

and NO2 and HCHO scattering weights at 440 and 340 nm, respectively, as a function of the TEMPO viewing 

geometry centered at 91°W, surface reflectance, cloud fraction, cloud pressure, and absorption by O3. The 

Geostationary Coastal and Air Pollution Events (GEOCAPE) Radiative Transfer Tool (based on the Vector Linearized 

Discrete Ordinate Radiative Transfer (VLIDORT) model (Spurr, 2006)) was used to create the lookup table. A fast 

optical centroid pressure simulator (Joiner et al., 2012), a simple mixed Lambertian model where clouds are 260 

parameterized as opaque reflective surfaces, was used to account for the effects of clouds on the SWs. Surface model 

reflectance is based on Moderate Resolution Imaging Spectroradiometer (MODIS) Blue Sky Albedo calculations, and 

the Cox-Munk Glitter kernel + whitecap parameterization + water leaving radiances. Climatology albedo is based on 

the OMI Lambertian equivalent reflectance. After deriving the SWs from the lookup table, “true” SCDs are calculated 

from the summation of the target trace gas (i.e., NO2, HCHO) concentration profile multiplied by the scattering 265 

weights in each model layer.  

To convert the true SCD to the final proxy VCD, we i) applied a statistical random noise model developed 

in Zoogman et al. (2017) for TEMPO proxy data, primarily as a function of spectral signal-to-noise ratios and column 

abundance of NO2 and HCHO, to the “true” SCDs, ii) applied climatological AMFs derived from NO2 and HCHO 

scattering weights based on the same lookup table approach as discussed above, but using NO2 and HCHO profiles 270 

from hourly model output data from the Goddard Earth Observing System Model version 5 with GEOS-Chem as a 

chemical model at ~12 km grid spacing (G5NR-Chem; Hu et al., 2018).  

2.4 Airborne spectrometers 

The primary evaluation data set used in this study is from the UV/VIS airborne remote-sensing data product from 

GeoTASO and GCAS flown during the LISTOS 2018 field campaign (16 flights between June 18 and October 19, 275 

2018). Due to the fact that no bias-corrected tropospheric column HCHO data is available during LISTOS 2018 from 

the Pandora network, this ground-based remote-sensing network is not applied here. Both the GeoTASO and GCAS 

instruments and retrievals are very similar and together provide a consistent evaluation data set (see specific details 

on the instruments and NO2 and HCHO retrievals in Kowalewski and Janz (2014), Leitch et al. (2014), Nowlan et al. 

(2016, 2018), and Judd et al. (2020)). GeoTASO and GCAS NO2 and HCHO data were obtained from a nominal flight 280 
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altitude of 9 km above ground level (agl) covering the majority of the troposphere. The airborne data from 13 flight 

days between June 25 and September 6, 2018 (see Table 1) are provided with a native spatial resolution of 250 m × 

250 m. To reduce noise in the raw GeoTASO and GCAS retrievals, the data were averaged to a 1 km × 1 km spatial 

resolution. In total, measurements from 8 and 12 flight days were spatiotemporally co-located with OMI and 

TROPOMI overpasses, respectively. A detailed explanation of the measurements and flights conducted during 285 

LISTOS 2018 is provided in Judd et al. (2020). 

 The airborne GeoTASO and GCAS retrievals are used here as the reference data set for validating all satellite 

data. However, the airborne remote-sensing data is not without error. A nearly identical GeoTASO and GCAS 

tropospheric column NO2 data set used in this work was applied in Judd et al. (2020) and was evaluated with a network 

of Pandora systems. Judd et al. (2020) demonstrated that the airborne NO2 retrievals had a median bias of ~1% with 290 

uncertainty within ±25% with no magnitude dependent biases. Due to minimal availability of ground-based remote-

sensing Pandora data of HCHO, airborne GeoTASO and GCAS retrievals of this species has had limited evaluation. 

Nowlan et al. (2018) did evaluate GCAS tropospheric HCHO retrievals using P-3B airborne in situ measurements and 

determined GCAS had generally good performance with a < 10% bias (minimal magnitude dependance in bias) and 

high correlation with observations. Overall, the satisfactory comparison of airborne GeoTASO and GCAS 295 

tropospheric column NO2 and HCHO with independent observations provides confidence that this data can be applied 

as a reference data set to validate OMI and TROPOMI retrievals. However, it should be kept in mind that there is 

some level of error/bias associated with the GeoTASO and GCAS data used in this study (e.g., Nowlan et al., 2016; 

2018; Judd et al., 2020). 

Table 1. Airborne (GeoTASO and GCAS) flight information (date, flight times, number of co-located satellite 300 

and airborne FNR grids) used in this study from the LISTOS 2018 field campaign.  

Flight Day 

Number 

Date Time (Hours in UTC) OMI FNR 

co-locations1 

TROPOMI FNR 

co-locations2 

1 June 25, 2018 
Morning: 12.5–15.7 

Afternoon: 16.8–20.3 
12 201 

2 June 30, 2018 
Morning: 12.2–15.6 

Afternoon: 16.7–20.4 
37 251 

3 July 2, 2018 
Morning: 11.4–16.6 

Afternoon: 17.9–21.5 
6 66 

4 July 19, 2018 
Morning: 11.4–15.3 

Afternoon: 16.9–20.9 
0 155 

5 July 20, 2018 
Morning: 11.4–15.3 

Afternoon: 17.1–21.1 
5 136 

6 August 5, 2018 
Morning: 12.5–16.5 

Afternoon: 17.8–22.3 
5 0 

7 August 6, 2018 
Morning: 11.7–16.0 

Afternoon: 17.2–21.5 
0 67 

8 August 15, 2018 
Morning: 11.2–15.5 

Afternoon: 17.0–21.6 
0 150 

9 August 16, 2018 Morning: 11.3–15.3 0 108 
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Afternoon: 17.3–21.5 

10 August 24, 2018 
Morning: 10.9–15.3 

Afternoon: 16.6–21.0 
20 147 

11 August 28, 2018 
Morning: 11.3–15.3 

Afternoon: 16.6–20.3 
8 150 

12 August 29, 2018 
Morning: 11.2–15.1 

Afternoon: 16.6–20.8 
0 166 

13 September 6, 2018 
Morning: 11.9–15.8 

Afternoon: 17.2–21.4 
8 96 

1OMI FNR co-locations for the near-native 0.15° × 0.15° spatial resolution gridded data. 
2TROPOMI FNR co-locations for the near-native 0.05° × 0.05° spatial resolution gridded data. 

2.5 CMAQ model simulation 

The prior vertical profiles play a major role in satellite retrievals of chemical constituents in the troposphere (e.g., 305 

Palmer et al., 2001; Boersma et al., 2007; Johnson et al., 2018). Furthermore, past research has demonstrated that 

using a well-constrained, high spatial resolution, air quality model or CTM as the a priori profile source for satellite 

retrievals can improve VCD results (e.g., Laughner et al., 2019). To compare NASA OMI and TROPOMI tropospheric 

NO2, HCHO, and FNR retrievals using a common a priori profile data set, we conduct sensitivity tests applying model 

simulated vertical profiles of NO2 and HCHO produced by the Community Multiscale Air Quality Model (CMAQ). 310 

Reprocessing OMI and TROPOMI NO2 and HCHO retrievals with a common, high spatial resolution (4 × 4 km2), 

model data product removes differences in the satellite products due to using different coarse spatial resolution model 

data sources as a priori vertical profiles.  

 We used CMAQ version 5.3 for air quality simulations during the LISTOS 2018 campaign. The CMAQ 

simulations were driven offline using the meteorological fields simulated by the Weather Research and Forecasting 315 

(WRF) model version 4.1. The WRF-CMAQ spatial domain set-up is shown in Fig. S1. The outer WRF domain covers 

the contiguous United States (CONUS) at a horizontal grid spacing of 12 × 12 km2 (481 × 369 grid points) and the 

inner WRF domain covers the northeastern US, encompassing the entire LISTOS 2018 campaign domain, at a 

horizontal grid spacing of 4 × 4 km2 (237 × 189 grid points). Both the outer and inner model domains use 35 vertical 

levels between the surface and 50 hPa. The WRF configuration follows Appel et al. (2017), which includes improved 320 

representation of the land-surface processes and vertical mixing, and employs four-dimensional data assimilation (also 

called grid nudging) every 6 hours to limit the growth of meteorological errors in the simulations (WRF configuration 

details in Table S1). A 15-day spin up period was used for the WRF-CMAQ simulations to minimize the impacts of 

errors in initial conditions. Anthropogenic emissions of trace gases and aerosols are based on the National Emissions 

Inventory (NEI) representative of 2014 because that was the latest available inventory from EPA at the time of 325 

emission preparation. NEI 2014 emissions were processed using the Sparse Matrix Operator Kernel Emissions 

(SMOKE) model with the same configuration as adopted in the EPA 2014 emissions modeling platform 

(https://www.epa.gov/air-emissions-modeling/2014-version-71-platform). The same WRF simulations described 

above were used to drive SMOKE for generating meteorology-dependent anthropogenic emissions. Biogenic 

emissions of trace gases and aerosols are calculated online within the model using the Biogenic Emissions Inventory 330 
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System (BEIS). The gas-phase chemistry and aerosol processes are represented using Carbon bond 6 (CB06) version 

r3 with AERO7 treatment of the secondary organic aerosols. Chemical lateral boundary conditions for the outer 

domain were based on the idealized profiles available in CMAQ but are dynamically provided to the inner domain 

every hour based on the outer domain simulations.  

2.6 Evaluation techniques 335 

In order to perform a systematic, direct comparison of daily satellite products to airborne retrievals, OMI and 

GeoTASO/GCAS data were spatially-averaged to 0.15° × 0.15° (~15 × 15 km2, similar to OMI nadir spatial resolution) 

for evaluating OMI. TROPOMI and airborne observations were spatially-averaged at 0.05° × 0.05° (~5 × 5 km2, 

similar to TROPOMI nadir spatial resolution) for evaluating TROPOMI data. To investigate the impact of the higher 

spatial resolution of TROPOMI, NO2, HCHO, and FNR retrievals from this sensor were also averaged to the 0.15° × 340 

0.15° for inter-comparison with OMI evaluation statistics. In order to smooth and reduce the noise of satellite data, 

we apply a point oversampling technique (e.g., McLinden et al., 2012) when spatially averaging the retrievals. This 

method uses a larger grid box radius, compared to the averaging resolution, to bin individual retrievals. When 

averaging satellite data to the 0.15° × 0.15° spatial resolution (standard radius of 0.075°), we employed a radius twice 

the standard size equal to 0.15°. Similarly, when averaging satellite data to the 0.05° × 0.05° spatial resolution 345 

(standard radius of 0.025°) we applied a radius of 0.05°. By spatially-averaging the tropospheric column NO2 and 

HCHO GeoTASO/GCAS data we minimized the spatial representation error between OMI and TROPOMI satellite 

retrieved pixels with those of GeoTASO/GCAS.  

Given that the nominal flight altitude for GeoTASO and GCAS observations was 9 km agl, in order to directly 

compare to satellite tropospheric column retrievals, we scaled airborne tropospheric column NO2 values by 350 

multiplying the observed values by the ratio of the total tropospheric NO2 column abundance over the tropospheric 

column NO2 abundance below 9 km agl (i.e., 
∫ 𝑇𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑁𝑂2 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 𝑡𝑟𝑜𝑝𝑜𝑝𝑎𝑢𝑠𝑒)

∫ 𝑇𝑟𝑜𝑝𝑜𝑠𝑝ℎ𝑒𝑟𝑖𝑐 𝑁𝑂2 (𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑡𝑜 9 𝑘𝑚 𝑎𝑔𝑙)
). This scaling factor for NO2, 

which showed that typically 60% to 99% of tropospheric NO2 is below 9 km agl, was derived for each co-located 

GeoTASO and GCAS retrieval, using the WRF-CMAQ simulations described in Sect. 2.5. Tropospheric column 

HCHO data from GeoTASO and GCAS were not scaled due to the fact that typically >95% of the total column HCHO 355 

is below the nominal aircraft flight altitude. 

 For comparison to satellite retrievals, GeoTASO and GCAS data were co-located to OMI and TROPOMI 

data using a temporal threshold of ± 60 minutes. Before GeoTASO and GCAS HCHO and NO2 data were co-located 

with satellite data they were filtered to remove airborne retrievals where the radiance flag was > 0.5 as they are 

considered to be influenced by clouds or glint. We initially applied a temporal threshold of ± 30 minutes; however, 360 

this resulted in < 50 total co-locations with OMI retrievals throughout the study time period. Therefore, the longer 

temporal threshold criteria was necessary to achieve enough co-locations for statistical evaluation. The longer 

temporal threshold of ± 60 minutes resulted in only slightly larger median biases compared to when applying the ± 30 

minute threshold. The similar bias statistics using temporal offsets of 30 and 60 minutes agrees with other studies 

which show minimal dependance on temporal offsets between 0 and 60 minutes (e.g., Tack et al., 2021). It should be 365 

noted that the temporal threshold of ± 60 minutes, and spatial gridding/averaging methods applied in this study, 
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resulted in slightly larger spread in TROPOMI NO2 data when evaluated to GeoTASO and GCAS data compared to 

the results in Judd et al. (2020) which used a ± 30 minute co-location threshold.  

Satellite retrievals with high quality were filtered for use by removing individual retrievals that did not have 

quality flags (qa) = 0 for HCHO and NO2 when applying OMI data. For TROPOMI, individual retrievals of NO2 and 370 

HCHO that had qa < 0.75 and qa < 0.5 were removed prior to spatial averaging, respectively. These qa values were 

selected based on guidance from OMI and TROPOMI user’s guides to remove data with large uncertainty to produce 

high quality science data products. Furthermore, to avoid anomalous OMI and TROPOMI retrieval values of HCHO, 

we remove VCDs with lower and upper bounds of -8.0 × 1015 and 7.6 × 1016 molecules cm-2, respectively. These 

bounds were determined from typical HCHO VCD values and a threshold of 3 times the fitting uncertainty of OMI 375 

retrievals following Zhu et al. (2020). Similarly, to avoid anomalous OMI and TROPOMI retrieval values of NO2, we 

remove VCDs with lower and upper bounds of -1.08 × 1015 and 8.07 × 1016 molecules cm-2, respectively (personal 

communication with OMI NO2 algorithm team). Both OMI and TROPOMI retrievals with solar zenith angles > 70° 

and effective cloud fractions > 30% and > 50%, respectively were also removed. These additional thresholds were 

chosen based on guidance from the OMI and TROPOMI user’s guides. Finally, only co-located spatially-averaged 380 

grids that had 75% spatial coverage by GeoTASO/GCAS data and airborne remote-sensing NO2 VCDs > 1.0 × 1015 

molecules cm-2 were used in the evaluation.  

 The statistical evaluation of daily and campaign-averaged (includes all flights displayed in Table 1) OMI and 

TROPOMI retrievals with co-located GeoTASO and GCAS spatially-averaged data was primarily done using bias 

(median), oscillation/variability in bias represented by the standard deviation of bias (referred to as bias standard 385 

deviation throughout), normalized median bias (NMB) which are normalized to the magnitude of observed data, and 

simple linear regression statistics (slope, y-intercept, coefficient of determination (R2)) based on ordinary least-

squares. 

3 Results 

In this section we evaluate the capability of NASA OMI products (hereinafter referred to as NASA OMI), QA4ECV 390 

OMI retrievals (hereinafter referred to as QA4ECV), and TROPOMI to retrieve tropospheric columns of NO2, HCHO, 

and FNRs during the LISTOS 2018 (temporally-averaged values from all flights hereinafter referred to as campaign-

averaged). We further evaluate these retrievals on a day characterized by large NO2 pollution focusing on NASA OMI 

and TROPOMI. We also present results of a sensitivity test using common a priori vertical profiles of NO2 and HCHO 

from WRF-CMAQ to reprocess NASA OMI and TROPOMI retrievals. Finally, we present information on the 395 

expected additional FNR information that will be provided from the future NASA geostationary TEMPO satellite. 

3.1 Campaign-averaged tropospheric FNRs 

Airborne observations during the summer of 2018 suggest that during the mid-day hours large regions of FNRs ≤ 1.0 

occurred over the urban regions surrounding New York City (NYC). The term “urban” here is used qualitatively as 

the region close in proximity to the center of NYC where elevated tropospheric column NO2 values over NOx emission 400 

regions are frequently observed. The opposite is true for the usage of “rural” hereinafter. Figure 1 shows the campaign-

https://doi.org/10.5194/amt-2022-237
Preprint. Discussion started: 7 September 2022
c© Author(s) 2022. CC BY 4.0 License.



14 

 

averaged FNRs from OMI (NASA and QA4ECV) and TROPOMI retrievals averaged to spatial resolutions of 0.15° 

× 0.15° and 0.05° × 0.05°, respectively compared to co-located airborne remote-sensing products. These regions of 

FNRs ≤ 1.0 likely have O3 production which is limited by VOC emissions. Outside of the VOC/radical-limited region 

around NYC, airborne observations show a clear transition zone of FNRs between 1.0 and 2.0 and NOx-limited 405 

regimes (FNR > 2.0) in the rural regions of the northeast US. It should be noted these FNR thresholds being discussed 

follow the assumptions of Duncan et al. (2010); however, there are uncertainties in the exact thresholds separating O3 

sensitivity production regimes and they can be spatiotemporally variable (e.g., Lu and Chang, 1998; Schroeder et al., 

2017; Souri et al., 2020; Ren and Xie, 2022). For example, a recent study by Jin et al. (2020) suggests that 

VOC/radical-limited regimes around NYC transition to NOx-limited regimes for FNRs between 2.9 and 3.8. For 410 

simplicity, we use the constant FNR ratio thresholds defined by Duncan et al. (2010) for discussion throughout the 

rest of this study. 

 Satellite retrievals during the summer of 2018 also displayed the same general regional patterns of FNRs in 

the northeast US that were observed by airborne remote-sensing (see Fig. 1). NASA OMI, QA4ECV, and TROPOMI 

retrieved lower FNRs in the urban region of NYC and a transition to NOx-limited regimes in the rural regions. 415 

However, all satellite products show higher FNRs (between 1.0 and 3.0) in the areas where airborne observations 

clearly observed NOx-saturated regimes. In general, TROPOMI FNRs at the 0.05° × 0.05° spatial resolution have the 

lowest values over NYC in better agreement with airborne observations. The higher spatial resolution satellite data 

provided by TROPOMI also has a smaller spatial extent of a transition zone and VOC/radical-limited regimes in 

comparison to the two OMI products. TROPOMI FNR retrievals and airborne observations display a clear urban/rural 420 

interface; however, OMI products result in noisier spatial patterns. Between the two OMI retrieval products, QA4ECV 

FNR values are lower in the observed VOC/radical-limited region in comparison to NASA OMI and appear to 

compare more favorably to airborne observations. 
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Figure 1: NASA OMI, QA4ECV, TROPOMI, and airborne tropospheric column FNR retrievals averaged for all flights 425 
conducted during the LISTOS 2018 field campaign. All co-located OMI and airborne remote-sensing tropospheric column 

FNR values are averaged at 0.15° × 0.15° and TROPOMI co-locations are averaged at both 0.05° × 0.05° and 0.15° × 0.15° 

spatial resolutions. The black triangle indicates the location of the city of NYC. 

 Figure 1 illustrates the impact of retrieval spatial resolution on the ability of satellite-derived FNRs to 

reproduce observed O3 sensitivity production regimes. TROPOMI retrieval data better captures the spatial pattern and 430 

urban/rural interface of observed O3 sensitivity production regimes compared to OMI data. TROPOMI results when 

gridded near the native resolution of the sensor (0.05° × 0.05°), while still higher compared to observed FNRs around 

NYC, were able to retrieve FNRs < 2.0. However, when averaged to a resolution similar to the native resolution of 

OMI (0.15° × 0.15°), TROPOMI data suggests higher FNRs ≥ 2.0 in the vicinity of NYC, in line with OMI retrieval 

products.  435 

 It should be noted that satellite- and airborne-retrieved FNRs are dependent on both tropospheric NO2 and 

HCHO values. Median/mean and unresolved biases in FNRs can then be driven by errors in either retrievals of NO2 

and/or HCHO. Therefore, the following sections of this work investigate the statistical comparison of NASA OMI, 

QA4ECV, and TROPOMI tropospheric NO2, HCHO, and resulting FNRs compared to airborne observations. 

3.2 Statistical evaluation of OMI and TROPOMI retrievals 440 

3.2.1 Tropospheric column NO2 retrievals 

The spatial pattern of campaign-averaged tropospheric column NO2 retrieved by the satellites and airborne sensors 

highlight the large pollution region around the urban region of NYC during the summer of 2018 (see Fig. S2). 

Tropospheric column NO2 concentrations over NYC from both satellite and airborne observations frequently exceed 

1.0 × 1016 molecules cm-2 within 60 minutes of the OMI and TROPOMI overpass times. However, while airborne 445 

tropospheric column NO2 values in the rural regions surrounding NYC were frequently observed to be < 2.0 × 1015 

molecules cm-2, satellite retrievals have larger background tropospheric column NO2 concentrations between 2.0 × 

1015 and > 4.0 × 1015 molecules cm-2. This suggests OMI and TROPOMI retrievals have a high bias in background 

tropospheric column NO2 concentrations. This high bias in satellite background tropospheric column NO2 values can 

possibly be linked to underestimated abundance of free tropospheric NO2 in CTMs used as a priori profile data sets 450 

for OMI and TROPOMI retrievals resulting in AMFs which are too low (e.g., Silvern et al., 2019). Furthermore, 

studies have shown that the coarse spatial resolution of the CTMs used to derive a priori NO2 profiles for OMI and 

TROPOMI cannot resolve the sharp gradients of NO2 at the urban/rural interface and lead to the overestimate of 

satellite retrievals in low pollution regions (Lamsal et al., 2014; Tack et al., 2021). Finally, other aspects of the satellite 

retrievals such as biases in stratospheric NO2 concentrations and separation from the troposphere, aerosol interference, 455 

and surface albedo could contribute to these overestimations in background, low pollution regions (e.g., Lamsal et al., 

2021). 

 Figure 2 shows the comparison of co-located NASA OMI, QA4ECV, and TROPOMI retrievals of 

tropospheric column NO2 concentrations with observed data from all flights (statistical evaluation shown in Table 2). 

This figure and Table 2 further emphasize the high bias of background tropospheric column NO2 concentrations 460 

retrieved by NASA OMI, QA4ECV, and TROPOMI. All satellite products typically have a high bias compared to the 
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small tropospheric column NO2 concentrations (< 5.0 × 1015 molecules cm-2) measured outside the urban regions of 

NYC, linear regression slopes < 0.65, and positive y-intercepts when compared to the airborne observations. Some of 

this high bias in background tropospheric column NO2 concentrations is offset in the campaign-averaged median 

biases by the fact that the satellite retrievals have a low bias compared to NO2 values observed over polluted regions 465 

(> 1.0 × 1016 molecules cm-2).  

 

Figure 2: Scatter plots illustrating the comparison of satellite- (NASA OMI, QA4ECV, and TROPOMI) and airborne-

retrieved tropospheric NO2 (molecule cm-2) for each co-located measurement taken during the field campaign. All co-

located OMI and airborne remote-sensing tropospheric column NO2 values are averaged at the 0.15° × 0.15° resolution and 470 
TROPOMI co-located data are averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows the 

1:1 comparison and the dashed line shows the linear regression fit of the comparison. The figure inset shows the main 

statistics (coefficient of determination (R2), slope (M), y-intercept (B), and median bias and bias standard deviation) of the 

comparison of satellite and airborne tropospheric column NO2 data. 

NASA OMI displays a small campaign-averaged median bias (NMB %) of 0.4±4.1 × 1015 molecules cm-2 475 

(6.3%) in comparison to tropospheric column NO2 observations. QA4ECV OMI data results in a campaign-averaged 

median bias of 0.4±4.5 × 1015 molecules cm-2 (6.8%). Finally, TROPOMI retrievals have a campaign-averaged median 

bias of -0.3±3.7 × 1015 molecules cm-2 (-4.8%) and 0.3±3.3 × 1015 molecules cm-2 (5.8%) when averaged at 0.05° × 

0.05° and 0.15° × 0.15° spatial resolution, respectively. It should be noted that the TROPOMI low bias in tropospheric 

column NO2 is improved with the newer retrieval algorithm used in this study compared to early versions of the data 480 

product (e.g., v1.2.2 had a campaign-averaged median low bias of -1.3±4.0 × 1015 molecules cm-2). In addition to 

mean/median biases, bias standard deviation, which is indicative of noise in the satellite retrievals, is very important 

for accurate retrievals of the spatial-resolved daily tropospheric column NO2, HCHO, and FNRs. At the near-native 

spatial resolution of the three satellite retrievals, the standard deviation in bias of the data were similar (~4.0 × 1015 

molecules cm-2) with QA4ECV OMI data having the largest bias standard deviation and TROPOMI having the least 485 
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noise in the data. TROPOMI data averaged to match OMI spatial resolution displayed lower bias standard deviation 

values of ~3.0 × 1015 molecules cm-2. At both spatial resolutions, TROPOMI tropospheric NO2 data has slightly less 

spread compared to OMI products. The results here suggest that OMI and TROPOMI tropospheric column NO2 

retrievals errors have a magnitude dependence and tend to have a high bias in rural/background regions and a low bias 

in moderately to highly polluted regions which agrees with past validation studies (e.g., Judd et al., 2020; Compernolle 490 

et al., 2020; Lamsal et al., 2021).  

 To determine if the higher spatial resolution of TROPOMI resulted in more favorable comparisons to 

observations, we compare TROPOMI tropospheric column NO2 values to OMI results. TROPOMI tropospheric 

column NO2 concentrations at 0.05° × 0.05° displayed the lowest campaign-averaged median bias of all satellite 

products, and the higher spatial resolution data better reproduces the spatial patterns of observed tropospheric column 495 

NO2. This is emphasized by the higher correlation when evaluating TROPOMI tropospheric column NO2 

concentrations with observations in comparison to the other satellite products and visually more clearly separating the 

urban/rural interface seen in tropospheric NO2 (see Fig. S2).  

Table 2. Statistical evaluation of NASA OMI, QA4ECV, and TROPOMI retrievals of tropospheric column NO2 

and HCHO and resulting FNRs. Statistics presented are the number of co-located grids (N), median bias ± bias 500 

standard deviation, NMB (%), coefficient of determination (R2), and linear regression slope (Slope). 

NASA OMI (0.15° × 0.15°) QA4ECV (0.15° × 0.15°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 101 101 116 N 82 85 106 

Bias  0.4±3.8 5.1±7.8 0.4±4.1 Bias  -0.2±3.3 2.3±8.9 0.4±4.5 

NMB  11.0 38.7 6.3 NMB  -5.4 17.3 6.8 

R2 0.23 0.19 0.62 R2 0.17 0.19 0.62 

Slope 1.0 0.46 0.63 Slope 0.67 0.54 0.44 

TROPOMI (0.15° × 0.15°) TROPOMI (0.05° × 0.05°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 261 261 261 N 1693 1741 1802 

Bias  0.3±1.4 2.9±4.9 0.3±3.3 Bias  0.4±2.3 1.9±6.7 -0.3±3.7 

NMB  9.3 23.1 5.8 NMB  13.0 12.9 -4.8 

R2 0.48 0.40 0.74 R2 0.29 0.28 0.75 

Slope 0.75 0.47 0.59 Slope 0.70 0.55 0.58 

*bias units are ×1015 molecules cm-2. 

3.2.2 Tropospheric column HCHO retrievals 

The spatial pattern of campaign-averaged tropospheric column HCHO retrieved by the satellites and airborne sensors 

highlight the large HCHO concentrations in both urban and rural regions during the summer of 2018 (see Fig. S3). 505 

This differs from tropospheric column NO2, which is primarily emitted from anthropogenic sources, due to the fact 

HCHO has both anthropogenic and natural precursor emission sources and precursors with longer atmospheric 

lifetime. The longer lifetime of precursor species producing HCHO result in less heterogeneity and gradients in HCHO 
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concentrations throughout the domain. Airborne observations of tropospheric column HCHO concentrations show 

that over NYC the concentrations are on average ~1.5 × 1016 molecules cm-2, and can exceed 2.5 × 1016 molecules 510 

cm-2 during the afternoon hours (see Fig. S3). Both OMI and TROPOMI retrieval products have smaller gradients 

between HCHO concentrations in the urban and rural regions in comparison to airborne observations.  

 Figure 3 shows the scatter plot comparison of co-located NASA OMI, QA4ECV, and TROPOMI retrievals 

of tropospheric column HCHO concentrations compared to observed data (statistical evaluation shown in Table 2). 

This figure and Table 2 illustrate the high bias of background tropospheric column HCHO concentrations retrieved 515 

by NASA OMI, QA4ECV, and TROPOMI compared to airborne observations. All satellite products have a high bias 

when tropospheric columns HCHO are ≤ 1.5 × 1016 molecules cm-2, linear regression slopes < 0.60, and positive y-

intercepts when compared to observations (in agreement with Vigouroux et al. (2020)). Both OMI retrieval products 

and TROPOMI data better replicate the larger HCHO concentrations (between 1.5 × 1016 and 3.0 × 1016 molecules 

cm-2) with some small low bias in more polluted regions (> 3.0 × 1016 molecules cm-2). On average, NASA OMI had 520 

the largest campaign-averaged median high bias of 5.1±7.8 × 1015 molecules cm-2 (38.7%). QA4ECV OMI data results 

in a lower campaign-averaged median high bias of 2.3±8.9 × 1015 molecules cm-2 (17.3%). Finally, TROPOMI 

retrievals had the lowest campaign-averaged median high bias of 1.9±6.7 × 1015 molecules cm-2 (12.9%) at 0.05° × 

0.05° spatial resolution and 2.9±4.9 × 1015 molecules cm-2 (23.1%) when averaged at 0.15° × 0.15°. Spatially 

averaging TROPOMI tropospheric column HCHO, along with tropospheric column NO2 and FNRs, to coarser grids 525 

in order to increase signal-to-noise aided in reducing the bias standard deviation in HCHO retrieval products (see 

Table 2). 

The results of the validation shown in Fig. 3 and Table 2 are consistent with recent validation studies such as 

the work of Vigouroux et al. (2020) and De Smedt et al. (2021) which also show that in regions of high tropospheric 

column HCHO concentrations, OMI and TROPOMI retrievals are generally consistent with some moderate low bias. 530 

However, in regions of lower background tropospheric column HCHO concentrations, both OMI and TROPOMI 

HCHO retrievals are biased high and OMI products tend to display a larger high bias compared to TROPOMI. 

Furthermore, these two studies agree with our analysis that TROPOMI HCHO has lower bias standard deviation, and 

higher correlations with observations, compared to both OMI products evaluated here. The larger spread in 

tropospheric HCHO from OMI compared to TROPOMI is likely due to the weaker signal-to-noise in OMI and 535 

potentially the fewer co-located data points for statistical analysis. This is further demonstrated by the TROPOMI bias 

standard deviation being nearly a factor of two smaller compared to NASA OMI and QA4ECV when averaged to the 

OMI spatial resolution. TROPOMI HCHO retrievals have the smallest median bias and bias standard deviation 

compared to observations, and highest correlation with airborne observations, suggesting this newer sensor can better 

retrieve HCHO compared to OMI during this time period.  540 

All three satellite HCHO products have larger bias standard deviations and low correlations, when compared 

to the statistical evaluation of satellite NO2 retrievals, when evaluated with observed tropospheric HCHO data. This 

highlights the large noise in these retrieval products likely driven by low signal-to-noise in HCHO retrievals. 

Furthermore, UV/VIS retrievals at shorter wavelengths (~340 nm) have much smaller sensitivity to HCHO compared 

to longer wavelengths (~440 nm) employed for NO2 retrievals (Lorente et al., 2017). The sensitivity of UV/VIS 545 
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retrievals to HCHO is lower throughout the middle and lower troposphere compared to NO2, due to stronger Rayleigh 

scattering at shorter wavelengths, approaching twice as low near the surface (Lorente et al., 2017). The higher 

sensitivity of NO2 retrievals in the middle to lower troposphere, compared to HCHO, is important as the highest 

concentrations, and largest spatiotemporal variability, of both NO2 and HCHO occur lower in the troposphere near the 

PBL likely leading to the higher correlation and lower bias standard deviation in the tropospheric column NO2 550 

statistical evaluation.  

 

Figure 3: Scatter plots illustrating the comparison of satellite- (NASA OMI, QA4ECV, and TROPOMI) and airborne-

retrieved tropospheric HCHO (molecule cm-2) for each co-located measurement taken during the field campaign. All co-

located OMI and airborne remote-sensing tropospheric column HCHO values are averaged at the 0.15° × 0.15° resolution 555 
and TROPOMI co-located data are averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows 

the 1:1 comparison and the dashed line shows the linear regression fit of the comparison. The figure inset shows the main 

statistics (coefficient of determination (R2), slope (M), y-intercept (B), and median bias and bias standard deviation) of the 

comparison of satellite and airborne tropospheric column HCHO data. 

3.2.3 Tropospheric column FNR retrievals 560 

The spatial distribution of tropospheric FNRs observed by aircraft measurements during LISTOS 2018 was discussed 

previously (see Sect. 3.1). Here we evaluated the accuracy of NASA OMI, QA4ECV, and TROPOMI retrieved FNRs 

compared to observations. Figure 4 shows the scatter plot comparison of co-located NASA OMI, QA4ECV, and 

TROPOMI retrievals of tropospheric column FNRs compared to observed data (statistical evaluation shown in Table 

2). NASA OMI displays a campaign-averaged median bias of 0.4±3.8 (11.0%) and QA4ECV OMI data resulted in a 565 

campaign-averaged median bias of -0.2±3.3 (-5.4%). TROPOMI retrievals had a campaign-averaged median bias of 

0.4±2.3 (13.0%) and 0.3±1.4 (9.3%) when averaged at 0.05° × 0.05° and 0.15° × 0.15° spatial resolution, respectively. 

NASA OMI, QA4ECV, and TROPOMI FNR retrievals had similar biases compared to observations when averaged 

at coarser spatial resolutions (see Table 2). Regardless of how tropospheric column NO2 and HCHO compared to 
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observations, all satellite products evaluated here resulted in campaign-averaged median biases ≤ 0.4 suggesting that 570 

the mean of biases in the individual proxy species can offset to result in accurate FNR values. 

 

Figure 4: Scatter plots illustrating the comparison of satellite- (NASA OMI, QA4ECV, and TROPOMI) and airborne-

retrieved tropospheric FNR (unitless) for each co-located measurement taken during the field campaign. All co-located 

OMI and airborne remote-sensing tropospheric column FNR values are averaged at the 0.15° × 0.15° resolution and 575 
TROPOMI co-located data are averaged at 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. The solid black line shows the 

1:1 comparison and the dashed line shows the linear regression slope of the comparison. The figure inset shows the main 

statistics (coefficient of determination (R2), slope (M), y-intercept (B), and median bias and bias standard deviation) of the 

comparison of satellite and airborne tropospheric column FNR data. 

 Visual inspection of TROPOMI and QA4ECV OMI retrievals suggests that these two products have the best 580 

ability to replicate the lowest observed FNRs over NYC during the field campaign (see Fig. 1). However, besides 

NASA OMI retrievals, the satellite products have linear regression slopes < 1.0 indicating a high bias for lower FNR 

values and some small low bias for higher observed FNRs. NASA OMI had a constant offset (slope = 1.0) of 0.8 for 

all values of observed FNRs.  

The results of this study emphasize that the ability of satellites to accurately observe spatiotemporal patterns 585 

of daily FNRs is dependent on retrievals of both tropospheric column HCHO and NO2. All three satellite products 

displayed high correlation with tropospheric column NO2 observations, suggesting these spaceborne sensors can 

accurately assess the spatial patterns of this species. However, all the satellite products had very low correlation with 

observations of tropospheric HCHO, directly resulting in the low correlation of satellite FNR values compared to 

observations. In fact, the rank in correlation levels of all four FNR satellite products evaluated here directly matches 590 

the rank in correlation levels of tropospheric HCHO. This leads to the conclusion that given bias variability in satellite 

tropospheric HCHO are large due to noise in the retrieval and low measurement sensitivity of shorter wavelengths in 

the troposphere, and directly drives the bias variability in FNR retrievals, satellite HCHO observations are the limiting 
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factor of using spaceborne retrievals to accurately assess daily FNRs for investigating O3 chemistry and sensitivity 

regimes. It should be noted that the HCHO validation data from GeoTASO and GCAS are also hindered by weak 595 

absorption signatures in the shorter UV/VIS wavelengths and could add to the bias variability derived in this study. 

However, the level of bias variability of tropospheric column HCHO data from OMI and TROPOMI derived in this 

study agrees with other recent studies (e.g., Vigouroux et al., 2020; De Smedt et al., 2021) which used other sources 

of evaluation data; therefore, we feel the conclusions drawn here are robust. 

3.3 High pollution case study 600 

During the LISTOS 2018 campaign there were large tropospheric column NO2 values retrieved on August 24, 2018 

by both NASA OMI and TROPOMI. This day was also identified as a day of high NO2 pollution concentrations, albeit 

not an O3 exceedance day, during the campaign by Judd et al. (2020). Figure 5 illustrates the values of tropospheric 

FNRs retrieved by NASA OMI and TROPOMI and measured by airborne observations on this day. Figure S4 displays 

the spatial distribution of tropospheric column NO2 and HCHO from NASA OMI and TROPOMI and the scatter plot 605 

comparison to airborne observations. Figure 5 demonstrates that both satellite retrievals and airborne observation data 

observed large areas of VOC/radical-limited O3 regimes (FNR < 1.0) in the NYC region. On this day, tropospheric 

column NO2 values measured by GCAS reached values > 2.0 × 1016 molecules cm-2 in large portions of the 

VOC/radical-limited regions. Furthermore, when comparing airborne tropospheric column HCHO values on August 

24, 2018 (Fig. S4) to campaign-averaged values (Fig. S3), it is clear that HCHO concentrations were lower on this 610 

day compared to other days throughout the summer. In combination with the large NO2 concentration, this further 

increased the VOC/radical-limitation on this day. The low HCHO/VOC concentrations measured by airborne and 

space-based remote-sensing products throughout the extensive VOC-limited regime could be the reason why a large-

scale O3 exceedance event was not experienced on August 24, 2018 in proximity to NYC. 

Table 3. Statistical evaluation of NASA OMI and TROPOMI retrievals of tropospheric column NO2 and 615 

HCHO, and resulting FNRs, on August 24, 2018. Statistics presented are number of co-located grids (N), 

median bias ± bias standard deviation, normalized median bias (NMB, %), coefficient of determination (R2), 

and linear regression slope (Slope). 

NASA OMI (0.15° × 0.15°) TROPOMI (0.05° × 0.05°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 20 20 21 N 147 147 154 

Bias  0.1±1.3 4.8±4.8 3.5±7.2 Bias  0.6±1.5 4.7±6.3 -0.6±8.8 

NMB  9.6 66.1 28.5 NMB  40.9 56.3 -4.3 

R2 0.35 0.25 0.65 R2 0.32 0.03 0.73 

Slope 0.89 1.17 0.49 Slope 0.80 0.33 0.42 

*bias units are ×1015 molecules cm-2. 

 NASA OMI retrievals in the region of lowest FNRs (40.5°N – 41.0°N, 74.0°W – 73.5°W) compared well to 620 

observations. In this region, average NASA OMI tropospheric FNRs (0.84) and GCAS observations at 0.15° × 0.15° 

spatial resolution (1.00) were both ≤ 1.0. TROPOMI retrievals resulted in slightly larger average FNRs (1.15) in this 
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area of VOC/radical-limited regions compared to GCAS observations at 0.05° × 0.05° spatial resolution (0.76). Both 

NASA OMI and TROPOMI had similar median biases (~5.0 × 1015 molecules cm-2) when compared to observed 

tropospheric HCHO; however, TROPOMI had a smaller median bias (-0.6±8.8 × 1015 molecules cm-2) compared to 625 

NASA OMI (3.5±7.2 × 1015 molecules cm-2) when evaluated with measured tropospheric NO2 data (see Table 3). This 

lower median bias in TROPOMI retrieved tropospheric column NO2 compared to the same sensor’s HCHO statistics 

led to the slight high bias compared to observed FNRs (0.6±1.5). The similar high biases in NASA OMI tropospheric 

column NO2 and HCHO resulted in FNRs which compared well to the observed values (median bias = 0.1±1.3). This 

further emphasizes the important result of this study that when investigating satellite retrievals of FNRs, that accurate 630 

FNRs do not necessarily mean that the particular satellite sensor accurately retrieves both NO2 and HCHO. For 

instance, NASA OMI has a NMB of < 10% when compared to GCAS FNRs; however, both tropospheric column NO2 

and HCHO have NMB values of 28.5% and 66.1%, respectively. Furthermore, both NASA OMI and TROPOMI have 

FNR linear regression slopes ≥ 0.8, suggesting accurate retrievals; however, tropospheric column NO2 and HCHO 

data from both satellite products have linear regression slopes which largely deviate from unity (see Fig. S4). 635 

Therefore, one should have caution when assuming satellite-retrieved accuracy of FNRs as offsetting biases in NO2 

and HCHO can mask errors in both, or individual, retrieved products. 

  

Figure 5: NASA OMI, TROPOMI, and airborne tropospheric column FNR retrievals on August 24, 2018. All co-located 

satellite and airborne remote-sensing tropospheric column FNR values are averaged at 0.15° × 0.15° for the OMI inter-640 
comparison and 0.05° × 0.05° spatial resolution for TROPOMI. The black triangle indicates the location of the city of NYC. 

The direct comparison of co-located NASA OMI and TROPOMI FNR data to airborne observations is shown in the scatter 

plots (right column). The solid black line shows the 1:1 comparison and the dashed line shows the linear regression fit of 

the comparison. The figure inset shows the main statistics (coefficient of determination (R2), slope (M), y-intercept (B), and 

median bias and bias standard deviation) of the comparison of satellite and airborne tropospheric column FNR data. 645 

A major challenge for accurately retrieving tropospheric FNRs with satellite sensors to evaluated O3 

sensitivity production regimes is the noise in daily retrievals of HCHO due to low signal-to-noise ratios and low 

measurement sensitivity of shorter UV/VIS wavelengths to HCHO in the troposphere. The noise in both NASA OMI 
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and TROPOMI tropospheric column HCHO data on August 24, 2018 can be seen in Fig. S4. Both NASA OMI and 

TROPOMI HCHO retrievals display low correlation values when compared to observations (see Table 3). Despite 650 

TROPOMI having higher correlation with observed NO2 compared to NASA OMI, the very low correlation of 

TROPOMI with observed HCHO results in lower correlation and higher bias standard deviations of FNRs compared 

to NASA OMI. This further emphasizes that the large bias variability, due to noisy data, in retrievals of tropospheric 

column HCHO are the limiting factor in using spaceborne observations of daily FNRs. 

3.4 Common a priori sensitivity test 655 

This section analyzes the impact of using common, high spatial resolution (4 × 4 km2), WRF-CMAQ-predicted NO2 

and HCHO vertical profiles as a prior information in NASA OMI and TROPOMI retrievals. GeoTASO and GCAS 

retrievals were not reprocessed in order to have a consistent reference data set for satellite evaluation. Figure 6 shows 

the campaign-averaged FNRs from NASA OMI and TROPOMI retrievals, when reprocessed with WRF-CMAQ NO2 

and HCHO a priori vertical profiles, compared to co-located airborne remote-sensing products (scatter plot 660 

comparison displayed in Fig. S5; statistical evaluation shown in Table 4). Comparing NASA OMI FNRs from this 

figure to Fig. 1, it is evident that using high spatial resolution WRF-CMAQ-predicted NO2 and HCHO vertical profiles 

as a prior information resulted in FNR retrievals that are better able to capture the low FNR values (FNR ≤ 1.0) 

observed around NYC. Reprocessed TROPOMI FNRs also have lower values around NYC; however, were reduced 

less compared to OMI retrievals. Furthermore, when comparing the results in Fig. S5 to Fig. 4 further demonstrates 665 

how the reprocessed satellite retrievals better capture the lower FNR values (FNR < 2.0). 

 

Figure 6: NASA OMI and TROPOMI reprocessed tropospheric column FNR retrievals compared to airborne FNR 

observations averaged for all flights. All co-located OMI and airborne remote-sensing tropospheric column FNR values are 

averaged at 0.15° × 0.15° and TROPOMI co-locations are averaged at both 0.15° × 0.15° and 0.05° × 0.05° spatial resolution. 670 
The OMI FNR retrievals calculated with the scaled WRF-CMAQ profiles are identified as “scaled”. The black triangle 

indicates the location of the city of NYC. 
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 Comparing standard retrieval products from NASA OMI (see Fig. S2 for NO2 and Fig. S3 for HCHO) to 

reprocessed retrievals using WRF-CMAQ a priori profiles (see Fig. S6 for NO2 and Fig. S7 for HCHO), it is clear that 

in general the higher spatial resolution model data resulted in larger tropospheric column NO2 and slightly larger 675 

tropospheric column HCHO values. For TROPOMI, reprocessing the retrievals with WRF-CMAQ a priori 

information caused increases in tropospheric column NO2 over polluted regions, but small decreases over rural areas 

characterized by background concentrations. Tropospheric column HCHO data for the reprocessed TROPOMI data 

were slightly lower in more polluted urban regions near NYC and much lower in the rural areas dominated by 

background concentrations compared to standard retrievals.  680 

The increases in NASA OMI tropospheric column NO2 concentrations resulted in a small negative bias in 

FNR retrievals (-0.3±3.9), compared to a small positive bias in the standard products (0.4±3.8). When compared to 

airborne observations the reprocessed NASA OMI tropospheric column NO2 data displays a large positive median 

bias (3.1±5.1 × 1015 molecules cm-2) which was not evident in the standard retrieval products. Similarly, for evaluation 

of the reprocessed NASA OMI tropospheric column HCHO data, a higher positive bias (8.6±7.8 × 1015 molecules cm-685 

2) was calculated compared to observations. It should be noted, as previously discussed, that offsetting high biases in 

both reprocessed NASA OMI tropospheric column NO2 and HCHO retrievals resulted in mean FNR values that 

compared relatively well to observations.  

Table 4. Statistical evaluation of NASA OMI and TROPOMI retrievals of tropospheric column NO2 and 

HCHO, and resulting FNRs, when reprocessed with high spatial resolution WRF-CMAQ a prior information. 690 

Statistics presented are number of co-located grids (N), median bias ± bias standard deviation, normalized 

median bias (NMB, %), coefficient of determination (R2), and linear regression slope (Slope). 

NASA OMI (0.15° × 0.15°) Scaled NASA OMI (0.15° × 0.15°)1 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 101 101 116 N 101 101 116 

Bias  -0.3±3.9 8.6±7.8 3.1±5.1 Bias  0.5±3.2 4.4±7.1 -0.3±3.9 

NMB  -9.4 65.7 50.0 NMB  16.7 35.6 -4.2 

R2 0.17 0.30 0.65 R2 0.21 0.25 0.67 

Slope 0.85 0.70 1.03 Slope 1.05 0.50 0.76 

TROPOMI (0.15° × 0.15°) TROPOMI (0.05° × 0.05°) 

 FNR HCHO* NO2*  FNR HCHO* NO2* 

N 261 261 261 N 1693 1741 1802 

Bias  -0.3±1.4 -1.2±5.1 0.1±3.8 Bias  0.2±2.2 -0.1±6.3 -0.4±4.1 

NMB  -9.1 -9.4 2.0 NMB  4.7 -0.3 -6.4 

R2 0.43 0.35 0.61 R2 0.32 0.32 0.67 

Slope 0.67 0.41 0.55 Slope 0.74 0.58 0.61 

*bias units are ×1015 molecules cm-2. 
1reprocessed with “scaled” CMAQ a priori profiles. 

 The larger tropospheric column NO2 concentrations in reprocessed NASA OMI data using high spatial 695 

resolution model data as a priori information was also shown in past studies (e.g., Souri et al., 2016; Goldberg et al., 
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2017). Both our study and the work by Goldberg et al. (2017) show that high spatial resolution CMAQ-predicted NO2 

a priori profiles results in OMI tropospheric column NO2 concentrations that are as high as a factor of 2 larger than 

the standard retrievals. This high bias is caused by smaller AMFs calculated due to the shape factor of high spatial 

resolution CMAQ-predicted NO2 concentrations having a too steep NO2 gradient. The steeper shape factor is caused 700 

by higher NO2 concentrations in the PBL and lower values in the free troposphere compared to the a priori profiles 

used in standard NASA OMI retrievals. The change in HCHO shape factors when using WRF-CMAQ a priori profiles 

resulted in slightly higher tropospheric column HCHO concentrations when compared to standard products for the 

same reason as tropospheric column NO2. Similar to Goldberg et al. (2017), we used airborne in situ observations of 

NO2 and HCHO from LISTOS 2018 and the Ozone Water-Land Environmental Transition Study 2 (OWLETS-2, 705 

https://www-air.larc.nasa.gov/missions/owlets/) field campaigns, OWLETS-2 took place just prior to LISTOS-2018 

during the summer of 2018 in the Baltimore, MD region, to correct the model-predicted a priori profiles for use in 

NASA OMI retrievals and is discussed later in this section. 

TROPOMI reprocessed retrievals at 0.05° × 0.05° spatial resolution displayed improved performance when 

compared to all standard retrieval products of HCHO and FNR. Tropospheric column NO2 concentrations in 710 

reprocessed TROPOMI retrievals resulted in a slightly lower median biases (-0.4±4.1 × 1015 molecules cm-2) 

compared to the standard products (-0.3±3.7 × 1015 molecules cm-2). Reprocessing TROPOMI retrievals of 

tropospheric column HCHO resulted in smaller concentrations and much improved median biases and bias standard 

deviation (-0.1±6.3 × 1015 molecules cm-2) compared to the standard products (1.9±6.7 × 1015 molecules cm-2). The 

good performance of both reprocessed TROPOMI NO2 and HCHO resulted in FNR values with a smaller median bias 715 

when evaluated with observations (0.2±2.2) compared to standard products (0.4±2.3). 

 As mentioned earlier, when WRF-CMAQ-predicted a priori profiles were used in NASA OMI retrievals it 

resulted in smaller AMF calculations compared to standard products, resulting in larger tropospheric column NO2 and 

HCHO concentrations and higher biases when evaluated with observations. Following methods similar to Goldberg 

et al. (2017) we used the University of Maryland (UMD) Cessna 402B airborne observations to apply in situ data 720 

observational constraints on the NO2 and HCHO a priori profiles applied in NASA OMI retrievals. The evaluation of 

WRF-CMAQ-predicted NO2 (14 flights during LISTOS 2018 and OWLETS-2) and HCHO (7 flights during LISTOS 

2018) vertical profiles using airborne data is displayed in Fig. S8. The comparison of WRF-CMAQ-predicted NO2 

concentrations to airborne in situ observations emphasizes how the a priori profile vertical gradients from the model 

runs are too steep. Compared to measured NO2 values, the model displays a high bias below 1 km agl of ~0.4 ppb 725 

which was often > 50% larger than observations. This is in stark contrast to the model performance above 2 km agl 

where the model has a low bias of -0.2 to -0.4 ppb often approaching 100% lower than observations. For the WRF-

CMAQ comparison to airborne in situ HCHO data, the model has a low bias throughout the lower troposphere, with 

larger low biases near the surface (-3.0 ppb between 0-1 km agl) and smaller low biases in the free troposphere (~-1.3 

ppb above 2 km agl). These low biases range between -50 to -100% lower compared to measured values. In addition 730 

to biases in emission inventories, chemical mechanisms, and other physiochemical parameterizations applied in 

CTMs, meteorological predictions by WRF, such as wind speed and direction, must have limited errors in order to 

accurately predict the horizontal and vertical distribution of NO2 and HCHO concentration (e.g., Laughner et al., 2016; 
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Liu et al., 2021). Compared to the airborne in situ observations taken during LISTOS 2018 and OWLETS-2, WRF 

wind speed and direction predictions during this study performed relatively well with median correlation (R) and bias 735 

values of 0.70 and 0.63 and ≤1.0 m s-1 in the u- and v-wind components, respectively. While the WRF simulations 

applied in this study capture the spatiotemporal variability and general magnitude of observed wind speed and 

direction, this does not mean that simulated meteorology did not partially contribute to the errors in vertical NO2 and 

HCHO profiles simulated by WRF-CMAQ. 

Using this model evaluation, we applied approximated scaling factors to the a priori profiles to reprocess 740 

NASA OMI data (hereinafter referred to as “scaled”). Separate scaling factors were applied above and below the PBL, 

approximated to be at 1.5 km agl, where noticeable differences in model performance were evident. For NO2, the 

model displays a high bias in the PBL and a low bias in the free troposphere and we apply a scaling factor of 0.5 to 

WRF-CMAQ a priori NO2 profiles in the PBL and 5.0 above the PBL. For HCHO, WRF-CMAQ predictions displayed 

low biases throughout the lower troposphere, and we applied a scaling factor of 2.0 to WRF-CMAQ a priori profiles 745 

in the PBL and 5.0 above the PBL. These scaling factors are approximations of the model performance and are simply 

applied to determine the impact of “raw” and “scaled” WRF-CMAQ-simulated a priori profiles in NASA OMI NO2 

and HCHO retrievals. Since the UMD Cessna 402B in situ data have limited spatiotemporal coverage of the LISTOS-

2018 and OWLETS-2 domains, we did not want to apply overly specific scaling factors to represent all locations/times 

studied in this work. 750 

 The spatial distribution of FNRs derived from the scaled NASA OMI reprocessed NO2 and HCHO retrievals 

is shown in Fig. 6 (scatter plot comparison displayed in Fig. S5; statistical evaluation shown in Table 4). From Table 

4 and Fig. 6 it can be seen that the scaled WRF-CMAQ a priori profiles result in higher FNR values and improved 

tropospheric column NASA OMI NO2 and HCHO retrievals compared to reprocessed products using the raw model 

output (see Fig. S6 and S7). Scaled NASA OMI tropospheric column NO2 and HCHO retrievals had much smaller 755 

biases and bias standard deviations of -0.3±3.9 × 1015 molecules cm-2 and 4.4±7.1 × 1015 molecules cm-2, respectively, 

compared to the retrievals with raw WRF-CMAQ predictions. This result demonstrates the need for accurate shape 

factors (i.e., vertical distribution of trace gases) to be used as a priori information in NASA OMI retrievals. Finally, 

the improved accuracy of tropospheric column NO2 and HCHO retrievals resulted in a slightly higher FNR median 

bias (0.5±3.2) compared to reprocessed data using raw CMAQ predictions.  760 

3.5 Expected FNR information from TEMPO 

TEMPO is expected to provide revolutionary information about air quality in North America (Zoogman et al., 2017; 

Chance et al., 2019). This geostationary sensor will provide tropospheric column NO2 and HCHO data, and resulting 

FNR products, up to every 1-2 hours during daylight hours. Here we demonstrate the expected improvement in the 

information content of tropospheric FNRs due to the diurnal retrievals of TEMPO compared to low earth orbit sensors 765 

(e.g., OMI and TROPOMI) which retrieve a single snapshot at ~13:30 local time. Synthetic OMI and TROPOMI 

FNRs are derived here by averaging the synthetic TEMPO data at 0.13° × 0.25° and 0.07° × 0.05°, respectively 

(representative of these sensor’s native spatial resolution). This was done to provide synthetic FNR data from the three 

sensors which only differ based on the spatiotemporal sampling frequency and not retrieval specifics. Once TEMPO 
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is launched, studies should be conducted to determine the difference in tropospheric FNR values due to the actual 770 

retrieval products between this geostationary sensor and other low earth orbit satellites. 

 One of the main improvements in tropospheric FNR information that is expected from TEMPO compared to 

low earth orbit sensors is the additional data throughout the diurnal cycle. Figure 7a shows the spatial distribution of 

2-hour-averaged synthetic TEMPO FNRs averaged at 0.03° × 0.05° spatial resolution (representative of the native 

spatial resolution of TEMPO) on July 12, 2020. This day was chosen due to data availability and the limited cloud 775 

coverage simulated for the synthetic product on this day. This figure also shows the time series of FNRs retrieved by 

TEMPO, and 13:30 retrieved OMI and TROPOMI FNRs, averaged for an urban region within 0.25° of NYC (Fig. 7b) 

and a rural region 1° north and west of NYC. It is clear that significant information about tropospheric column NO2 

and HCHO, and resulting FNRs, which will be used to investigate O3 production sensitivity regimes will be gained 

when TEMPO is launched compared to OMI and TROPOMI. Due to emissions and chemical production/destruction 780 

of NO2 and HCHO, tropospheric FNRs vary significantly throughout the day (by around a factor of 3 in the vicinity 

of NYC on this day, see Fig. 7b) with large swaths of VOC/radical-limited regions in the northeast US in the morning 

hours which transition to NOx-limited regimes during the afternoon. Rural regions also display a strong diurnal pattern 

of FNRs; however, with much higher values compared to urban regions due to the lack of significant NOx emission 

sources (see Fig. 7c). During the afternoon hours when overpasses of OMI and TROPOMI occur, FNRs are larger 785 

compared to morning and evening values which will be retrieved by TEMPO. In addition to the improved temporal 

resolution of TEMPO, the increased spatial resolution of these retrievals compared to OMI and TROPOMI will also 

provide improved information on spatial distributions of these proxy species and FNRs. 
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Figure 7: a) Synthetic TEMPO 2-hour-averaged tropospheric column FNR retrievals between 11 and 21 UTC on July 12, 790 
2020. All synthetic TEMPO tropospheric column FNR data are averaged to a 0.03° × 0.05° spatial resolution. The white 

triangle indicates the location of the city of NYC. This figure also shows the timeseries of hourly TEMPO FNR values (red 

line between 11 on July 12, 2020 and 00 UTC on July 13, 2020) averaged b) within 0.25° of NYC and c) a rural location 1° 

north and west of NYC. The value of tropospheric column FNR retrieved by synthetic OMI (blue bar) and TROPOMI 

(green bar) at ~13:30 local time (represented by 17 UTC data) are presented in panel b) and c). 795 

4 Conclusions 

This study presents a statistical evaluation and inter-comparison of tropospheric FNR retrievals from two commonly 

applied low earth orbit sensors for investigating O3 production sensitivity regimes (i.e., OMI and TROPOMI). The 

evaluation of NASA OMI, QA4ECV OMI, and TROPOMI retrievals of tropospheric NO2 and HCHO, and resulting 

FNRs, was conducted with airborne remote-sensing observations (GeoTASO and GCAS) during LISTOS 2018. Past 800 

studies have focused on the evaluation of satellite retrievals of tropospheric column NO2 and HCHO, individually; 

however, this is the first study to validate and inter-compare multiple satellite platform’s and retrieval algorithm’s 

ability to retrieve tropospheric FNRs and also quantify the impact of horizontal spatial resolution, a priori vertical 

profile information, and different retrieval algorithms. The quantification of satellite-retrieved tropospheric FNRs 

biases/errors is currently an important, but relatively unknown, uncertainty when applying spaceborne remote-sensing 805 

products to investigate O3 production regimes. 
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NASA OMI, QA4ECV OMI, and TROPOMI retrievals reproduce this general spatial pattern of observed 

tropospheric FNRs; however, displayed higher FNRs (between 1.0 and 3.0) in the urban regions of NYC where 

observations suggest NOx-saturated regimes (FNR < 1.0). The statistical evaluation of these satellite products 

illustrated that all three retrievals have a high bias of background-level tropospheric column NO2 and HCHO 810 

concentrations. The satellite retrievals compare more accurately to larger tropospheric column NO2 and HCHO values 

observed in the moderately polluted areas with a tendency towards a low bias in the more polluted areas. The 

magnitude-dependent biases for OMI and TROPOMI NO2 and HCHO derived in this study agrees with other recent 

validation projects (e.g., Judd et al., 2020; Vigouroux et al., 2020; Compernolle et al., 2020; Lamsal et al., 2021; De 

Smedt et al., 2021). Both OMI and TROPOMI retrievals compared well to observed NO2 throughout the campaign 815 

with NMB values < 10%. The statistical comparison with observed HCHO data resulted in larger and more variable 

biases between the three satellite products. Overall, daily and campaign-averaged comparisons of the satellite HCHO 

data to observations displayed large bias standard deviations emphasizing the large noise in these retrieval products 

which hinders the accuracy of FNRs from spaceborne sensors. Averaging TROPOMI HCHO data to coarser spatial 

resolutions, in order to improve signal-to-noise, proved capable to reduce bias standard deviations compared to 820 

observations. While all three satellite products at the near native spatial resolutions had campaign-averaged FNR 

median biases < 0.5, the bias standard deviations were high (> 2.0), primarily due to noise in the HCHO retrievals. 

Given the limited measurement sensitivity of shorter UV/VIS wavelengths to HCHO in the middle to lower 

troposphere, improved information (in situ, remote-sensing, or models) of the vertical profiles of HCHO to be used as 

a priori information would benefit satellite remote-sensing capabilities for observing HCHO and FNRs. 825 

 The higher spatial resolution of TROPOMI, along with a good signal-to-noise ratio, allows this sensor to 

better capture the spatiotemporal variability and urban/rural interface of tropospheric column NO2 and HCHO values 

and resulting FNRs. This satellite data had the highest correlations with observed NO2, HCHO, and FNRs throughout 

the campaign, along with lowest bias standard deviation of all three satellite products. The added benefit of TROPOMI 

spatial resolution is important as this sensor has now been operational for 5 years and can be applied in trend analysis 830 

along with case studies. Future studies of FNR trends should include both OMI and TROPOMI retrievals and 

determine best practices to fuse/link the two data sets. 

 NASA OMI retrievals of tropospheric FNRs had lower median biases and bias standard deviations compared 

to TROPOMI on a day identified as having high NO2 pollution (August 24, 2018). However, this sensor did not 

provide more accurate retrievals of HCHO and NO2 compared to TROPOMI. This fact, along with results from the 835 

campaign-averaged analysis, demonstrates that biases in tropospheric NO2 and HCHO can offset resulting in accurate 

FNR retrievals. While accurate FNR retrievals are informative, and necessary to studying regimes of O3 production 

sensitivity, the actual magnitudes of tropospheric NO2 and HCHO concentrations are vital for calculating/investigating 

quantitative O3 production rates (Souri et al., 2022a). Therefore, it is important to understand the accuracy of not only 

a satellite’s FNR retrievals, but also the ability to retrieve the magnitudes of both chemical proxy species. Another 840 

interesting finding during this high NO2 event was that all satellite and airborne observations measured a large region 

where O3 production was likely VOC-limited (FNRs < 1.0) in the vicinity of NYC; however, no large-scale O3 

exceedance events occurred on this day. Interestingly, all satellite and airborne observations on this day also measured 
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lower than average HCHO concentrations in the vicinity of NYC and these low concentrations of HCHO, a proxy for 

VOC abundances, in the VOC-limited O3 production regime around NYC could have been the reason why O3 845 

formation was not elevated on this day. 

 Applying multiple retrieval algorithms to the radiances of a single satellite sensor is of interest in order to 

determine how input variables (e.g., information on a priori vertical profiles, clouds, surface albedo, etc.) impact the 

retrieval performance to identify the most accurate data products. In this study we evaluated results of OMI retrievals 

applying two well-known retrieval algorithms (i.e., NASA version 4 product and output from the QA4ECV project). 850 

Results from the two retrievals were similar for NO2 but differed primarily in tropospheric column HCHO, where 

NASA OMI data had a median bias a factor of two larger than QA4ECV data. Both retrieval algorithms resulted in 

high bias standard deviation of tropospheric HCHO. While NASA OMI data displayed less accurate retrievals in 

HCHO, and similar performance for NO2, compared to QA4ECV data, NASA OMI data resulted in FNR values with 

similar median bias and slightly higher bias standard deviations. Given that both the NASA and QA4ECV retrievals 855 

of tropospheric HCHO resulted in noisy data products from OMI (illustrated by large bias standard deviations), this 

emphasizes the need for improved signal-to-noise and calibration and improved a priori vertical profile information 

of HCHO to negate the low measurement sensitivity of HCHO in the middle to lower troposphere for future satellite 

sensors and/or improved retrieval algorithms of HCHO. Addressing this issue, a new SAO OMI collection 4 HCHO 

retrieval product is planned to be released by the end of 2022 (personal communication with the SAO algorithm team). 860 

The new retrieval could represent a step forward in the quality of the OMI HCHO product with improvements in OMI 

radiance calibration and quality control translating to a more stable and less noisy HCHO retrievals from OMI. Future 

studies should apply this potentially improved OMI HCHO retrieval product to evaluate the improvement in satellite-

derived FNRs. 

Our study investigated the impact of high spatial resolution WRF-CMAQ-predicted NO2 and HCHO a priori 865 

profiles on OMI and TROPOMI retrievals of FNRs. Using the WRF-CMAQ-predicted a priori information resulted 

in highly accurate retrievals of FNRs with median biases ≤ 0.5 over the entire campaign. However, while reprocessed 

NASA OMI data had only a small low median bias in FNR, the high spatial resolution model data resulted in large 

high biases in both tropospheric NO2 and HCHO. These high biases are caused by errors in the shape factor imposed 

by the model data. We scaled WRF-CMAQ-predicted vertical profiles of a priori NO2 and HCHO using airborne in 870 

situ observations which resulted in smaller biases in the traces gas retrievals. This demonstrates the need for accurate 

shape factors (i.e., vertical distribution of trace gases) to be used as a priori information in OMI retrievals. Furthermore, 

while high spatial resolution CTM simulations likely better capture spatial heterogeneity of trace gases such as NO2 

and HCHO, shape factors imposed by this specific WRF-CMAQ analysis degraded OMI retrieval performance 

compared to standard data products which use the coarser resolution GMI model as a the a priori. TROPOMI 875 

reprocessed data on the other hand had improved performance when using the higher spatial resolution WRF-CMAQ 

data as the a priori product compared to standard retrievals which apply coarser resolution TM5 output. The fact that 

TROPOMI native spatial resolution is similar to the WRF-CMAQ resolution used in this study, could have resulted 

in the better results when reprocessing TROPOMI data compared to OMI. Future studies should investigate the impact 

of various spatial resolution a priori profile data sets, ranging from the ~1° × 1° GMI and TM5 model data used for 880 
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OMI and TROPOMI, respectively, to much higher resolution air quality model simulations, on the results of 

reprocessed satellite NO2 and HCHO data.  

 Overall, the biases, bias standard deviations, and correlations presented in this study can be used in future 

studies when interpreting the accuracy of OMI and TROPOMI retrievals of FNRs used for investigating O3 sensitivity 

regimes applying satellite products. The individual satellite products display varying degrees of capability to retrieve 885 

tropospheric FNRs and it is necessary to further validate OMI and TROPOMI retrievals using other field campaign 

data in different regions of the world to determine regional biases, and identify the primary controlling factors of 

systematic and random errors (e.g., cloud fraction, surface albedo, spatial resolution, signal-to-noise ratios, a priori 

information, etc.). A main take away from this study is that it is necessary to statistically evaluate both the tropospheric 

FNRs, and the NO2 and HCHO products, individually, as large biases in both NO2 and HCHO satellite products can 890 

offset resulting in accurate FNR values. Our study goes beyond investigating median biases, as the noise in satellite 

retrievals of HCHO result in large bias standard deviations when compared to observations. The large bias 

variability/noise in tropospheric column HCHO retrievals appear to be the controlling and limiting factor of daily FNR 

accuracy.  
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last access: 4/27/2020), QA4ECV OMI NO2 and HCHO (http://www.qa4ecv.eu/ecvs; last access: 3/3/2020), and 

TROPOMI PAL NO2 (https://data-portal.s5p-pal.com/; last access: 12/20/2020) and operational HCHO 

(https://earthdata.nasa.gov/; last access: 4/27/2020) satellite data. For evaluating these satellite products we use 

airborne remote sensing data from GeoTASO and GCAS which were downloaded from the LISTOS-2018 campaign 
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